-
Untitled
Jihun Lee
2021 9 15
R Markdown
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
#Part2-1: R vs Rstudio. Programming knowledge check. #Part2-2: Time Series Code Intro(Candy Production) #Part2-3: Supplement by Basic Curriculum #Part2-4: Time Series Theory #Part4: HW library(ggplot2) library(ggthemes) library(forecast)
## Registered S3 method overwritten by 'quantmod': ## method from ## as.zoo.data.frame zoo
library(tseries) library(readxl) US_candy_production <- read_excel("Candy Production/candy2.xlsx") # Take a look at the class of the dataset US_candy_production class(c("a","b","c"))
## [1] "character"
class(c(1,2,3))
## [1] "numeric"
str(US_candy_production)
## tibble [548 x 2] (S3: tbl_df/tbl/data.frame) ## $ observation_date: POSIXct[1:548], format: "1972-01-01" "1972-02-01" ... ## $ IPG3113N : num [1:548] 85.7 71.8 66 64.6 65 ...
head(US_candy_production)
## # A tibble: 6 x 2 ## observation_date IPG3113N ## <dttm> <dbl> ## 1 1972-01-01 00:00:00 85.7 ## 2 1972-02-01 00:00:00 71.8 ## 3 1972-03-01 00:00:00 66.0 ## 4 1972-04-01 00:00:00 64.6 ## 5 1972-05-01 00:00:00 65.0 ## 6 1972-06-01 00:00:00 67.6
dim(US_candy_production)
## [1] 548 2
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ## 1 5.1 3.5 1.4 0.2 setosa ## 2 4.9 3.0 1.4 0.2 setosa ## 3 4.7 3.2 1.3 0.2 setosa ## 4 4.6 3.1 1.5 0.2 setosa ## 5 5.0 3.6 1.4 0.2 setosa ## 6 5.4 3.9 1.7 0.4 setosa
iris$Sepal.Width
## [1] 3.5 3.0 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 3.7 3.4 3.0 3.0 4.0 4.4 3.9 3.5 ## [19] 3.8 3.8 3.4 3.7 3.6 3.3 3.4 3.0 3.4 3.5 3.4 3.2 3.1 3.4 4.1 4.2 3.1 3.2 ## [37] 3.5 3.6 3.0 3.4 3.5 2.3 3.2 3.5 3.8 3.0 3.8 3.2 3.7 3.3 3.2 3.2 3.1 2.3 ## [55] 2.8 2.8 3.3 2.4 2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0 2.7 2.2 2.5 3.2 2.8 ## [73] 2.5 2.8 2.9 3.0 2.8 3.0 2.9 2.6 2.4 2.4 2.7 2.7 3.0 3.4 3.1 2.3 3.0 2.5 ## [91] 2.6 3.0 2.6 2.3 2.7 3.0 2.9 2.9 2.5 2.8 3.3 2.7 3.0 2.9 3.0 3.0 2.5 2.9 ## [109] 2.5 3.6 3.2 2.7 3.0 2.5 2.8 3.2 3.0 3.8 2.6 2.2 3.2 2.8 2.8 2.7 3.3 3.2 ## [127] 2.8 3.0 2.8 3.0 2.8 3.8 2.8 2.8 2.6 3.0 3.4 3.1 3.0 3.1 3.1 3.1 2.7 3.2 ## [145] 3.3 3.0 2.5 3.0 3.4 3.0
iris[,"Sepal.Width"]
## [1] 3.5 3.0 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 3.7 3.4 3.0 3.0 4.0 4.4 3.9 3.5 ## [19] 3.8 3.8 3.4 3.7 3.6 3.3 3.4 3.0 3.4 3.5 3.4 3.2 3.1 3.4 4.1 4.2 3.1 3.2 ## [37] 3.5 3.6 3.0 3.4 3.5 2.3 3.2 3.5 3.8 3.0 3.8 3.2 3.7 3.3 3.2 3.2 3.1 2.3 ## [55] 2.8 2.8 3.3 2.4 2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0 2.7 2.2 2.5 3.2 2.8 ## [73] 2.5 2.8 2.9 3.0 2.8 3.0 2.9 2.6 2.4 2.4 2.7 2.7 3.0 3.4 3.1 2.3 3.0 2.5 ## [91] 2.6 3.0 2.6 2.3 2.7 3.0 2.9 2.9 2.5 2.8 3.3 2.7 3.0 2.9 3.0 3.0 2.5 2.9 ## [109] 2.5 3.6 3.2 2.7 3.0 2.5 2.8 3.2 3.0 3.8 2.6 2.2 3.2 2.8 2.8 2.7 3.3 3.2 ## [127] 2.8 3.0 2.8 3.0 2.8 3.8 2.8 2.8 2.6 3.0 3.4 3.1 3.0 3.1 3.1 3.1 2.7 3.2 ## [145] 3.3 3.0 2.5 3.0 3.4 3.0
# Assign more meaningful variable names colnames(iris)
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb ## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 ## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 ## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 ## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 ## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 ## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 ## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 ## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 ## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 ## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 ## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 ## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 ## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 ## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 ## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 ## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 ## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 ## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 ## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 ## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 ## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 ## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 ## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 ## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 ## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 ## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 ## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 ## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 ## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 ## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 ## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 ## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
colnames(US_candy_production)<-c("Period","candy_production") # Convert data into time series dataset attach(US_candy_production) candyts<-ts(candy_production,c(1972,1),c(2017,8),12) str(candyts)
## Time-Series [1:548] from 1972 to 2018: 85.7 71.8 66 64.6 65 ...
class(candyts)
## [1] "ts"
sum(is.na(iris))
## [1] 0
c(NA,1,2,3,4)
## [1] NA 1 2 3 4
# Take a peek at the dataset candyts
## Jan Feb Mar Apr May Jun Jul Aug ## 1972 85.6945 71.8200 66.0229 64.5645 65.0100 67.6467 69.0429 70.8370 ## 1973 91.2997 77.2700 69.6110 70.2986 71.6822 74.8635 72.0464 73.1748 ## 1974 88.6985 83.6098 77.2300 67.3209 74.6196 79.5858 66.0568 71.1864 ## 1975 67.0117 52.6964 50.6689 59.7613 60.8277 63.3629 62.3089 66.9021 ## 1976 87.9578 75.1878 62.0101 64.4758 70.5454 68.2086 69.3122 71.5922 ## 1977 97.3515 90.0083 77.2871 76.0459 77.9316 78.3077 75.8701 78.1822 ## 1978 90.1141 80.4678 76.4640 77.4211 76.7081 78.1769 72.4653 75.9054 ## 1979 98.6382 84.7727 81.0653 77.1607 78.3780 81.0958 74.7939 77.1113 ## 1980 86.9268 84.4365 74.4834 65.5610 74.3631 76.9925 71.0376 77.2616 ## 1981 96.3481 90.4918 78.0943 78.0284 83.3531 83.0404 79.2798 81.7679 ## 1982 95.9863 92.9899 83.0765 73.5603 76.4383 78.5492 76.3145 77.7653 ## 1983 95.1877 87.1973 77.9717 73.7339 75.5696 74.7701 76.3340 79.5580 ## 1984 93.8437 86.3220 78.9029 75.6699 77.8830 77.6690 76.9080 81.2320 ## 1985 97.6849 87.1184 79.1429 76.2069 77.3304 75.8357 75.1953 79.9166 ## 1986 97.3994 93.6471 78.8262 73.6548 76.5236 76.7767 73.4034 79.5478 ## 1987 97.1736 94.2793 83.6225 77.3408 78.0336 79.1708 76.1298 83.5260 ## 1988 95.8055 95.3010 89.8740 80.8266 82.4593 86.7724 90.7579 98.0626 ## 1989 102.9508 102.3499 93.4219 88.7382 87.9183 90.5658 89.7340 96.5697 ## 1990 99.9894 101.2116 94.8477 88.4239 88.6775 92.7610 96.9885 102.3169 ## 1991 107.4831 111.4080 104.8112 96.0485 94.9222 102.6901 100.1583 109.7879 ## 1992 104.3101 102.7870 94.9205 92.0467 89.7304 92.8576 92.1938 96.2302 ## 1993 105.0701 102.2842 94.8146 89.6044 88.4397 94.8144 95.7128 103.4214 ## 1994 105.3330 100.7475 98.4825 89.3258 87.0124 93.7943 96.4548 102.9823 ## 1995 107.7064 99.2227 96.1946 94.2656 93.5966 98.2886 98.2274 102.2729 ## 1996 104.1852 105.5477 102.9177 94.8080 97.0557 100.4093 98.2829 108.0978 ## 1997 110.6349 109.6545 106.5499 98.1605 97.3783 101.5750 98.3122 109.9673 ## 1998 119.7766 117.1886 110.8164 106.1647 107.1149 110.8432 109.0117 117.6771 ## 1999 117.3789 114.6903 107.1010 106.2725 107.8371 108.3356 107.8132 112.5035 ## 2000 123.1325 119.7423 113.9508 115.9481 108.7202 114.2071 111.8737 117.9027 ## 2001 122.5767 121.8879 118.5969 114.6967 112.9349 115.3333 113.4896 119.6772 ## 2002 117.5658 114.5385 110.3068 104.6927 101.8499 112.2162 110.4021 117.5309 ## 2003 113.0303 111.1786 111.2168 105.1536 107.6101 111.6628 102.8517 113.1477 ## 2004 116.1890 117.6700 103.9096 102.2036 109.8036 106.2960 106.1117 116.2320 ## 2005 124.5687 123.9260 107.2575 106.8015 111.4551 107.1940 110.2132 114.8196 ## 2006 118.2816 117.8165 108.4194 107.5783 101.9894 101.9425 101.7114 112.0216 ## 2007 121.7363 116.4986 112.6224 99.4400 98.0703 94.9320 91.3872 100.7496 ## 2008 108.7465 101.7820 97.2060 91.8637 88.9254 89.0084 85.1186 88.5622 ## 2009 89.9004 88.9836 85.5603 79.7102 80.2515 79.5651 82.3126 89.0494 ## 2010 100.3797 99.0155 91.9654 89.4914 89.9713 89.5047 96.4638 106.7689 ## 2011 103.0635 102.5548 98.9834 97.5274 91.3629 89.6899 89.6268 91.8899 ## 2012 99.9662 99.0417 94.1484 87.6950 85.3510 86.5815 89.5217 98.2967 ## 2013 107.0733 102.0263 102.6319 95.3206 91.7584 91.8125 92.4299 100.3593 ## 2014 104.5665 103.9509 101.0708 93.0044 88.4073 89.3661 88.0949 98.0799 ## 2015 109.9525 108.9073 106.5261 101.0631 96.7802 100.8339 102.8290 115.9030 ## 2016 108.5041 108.1308 107.9417 103.6179 102.0816 102.4044 102.9512 104.6977 ## 2017 109.4666 113.4661 105.2245 107.4288 101.9209 104.2022 102.5861 114.0613 ## Sep Oct Nov Dec ## 1972 75.0462 106.9289 105.5962 105.9673 ## 1973 80.5915 102.9200 109.2524 105.2210 ## 1974 70.1750 99.2212 101.1201 86.8930 ## 1975 66.3200 96.3411 105.6285 102.1819 ## 1976 76.9073 107.9049 111.6584 113.9655 ## 1977 84.2727 109.2254 106.1656 113.0575 ## 1978 82.7320 105.0435 111.6915 114.0821 ## 1979 80.8078 101.0970 106.7263 105.6220 ## 1980 77.9510 100.8283 106.7109 107.0469 ## 1981 83.2954 118.4981 116.9605 113.2558 ## 1982 81.3017 114.1349 114.9389 115.1824 ## 1983 82.8953 110.4480 106.5100 103.9983 ## 1984 85.8844 112.1683 115.5118 112.8158 ## 1985 89.5288 112.2728 113.6916 117.1114 ## 1986 88.4485 115.9014 119.4066 115.4294 ## 1987 90.7704 121.6259 124.8565 122.6595 ## 1988 102.5171 125.7369 123.4990 122.4540 ## 1989 101.0261 120.0367 123.3104 125.9960 ## 1990 108.6388 124.4571 133.2020 134.4426 ## 1991 111.1361 124.0982 129.3138 124.9696 ## 1992 104.1677 118.9880 122.1755 121.4803 ## 1993 108.6304 124.8315 124.8048 122.7720 ## 1994 109.7563 123.0683 123.1853 124.9834 ## 1995 107.2035 120.4112 123.8626 128.9061 ## 1996 114.7798 126.2366 133.8463 136.1510 ## 1997 115.0362 129.5071 135.1607 136.0268 ## 1998 120.9282 132.6661 136.9855 135.9605 ## 1999 116.6453 131.6485 131.7630 134.5654 ## 2000 125.6499 136.8146 135.6331 138.7040 ## 2001 123.5141 125.5298 128.7324 129.6597 ## 2002 119.4877 124.0385 128.5738 124.1789 ## 2003 116.8135 125.1860 132.7907 128.8211 ## 2004 120.7290 132.3043 133.1452 129.9987 ## 2005 119.7252 137.1695 136.3902 139.9153 ## 2006 118.6654 129.6397 130.3710 132.0261 ## 2007 110.1524 115.9774 118.4564 120.7117 ## 2008 103.2736 114.0601 115.8743 101.7672 ## 2009 101.1519 123.6728 117.0719 116.5435 ## 2010 115.8542 126.2773 117.7195 118.7519 ## 2011 93.9062 116.7634 116.8258 114.9563 ## 2012 112.2694 114.9091 116.0791 116.1401 ## 2013 105.5167 117.3458 121.6179 123.2412 ## 2014 106.8675 119.7665 129.0619 128.5528 ## 2015 115.8964 126.7440 124.5176 120.2374 ## 2016 109.3191 119.0502 116.8431 116.4535 ## 2017
# Check for missing values sum(is.na(candyts))
## [1] 0
# Check the frequency of the time series data frequency(candyts)
## [1] 12
# Check the cycle of the time series cycle(candyts)
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ## 1972 1 2 3 4 5 6 7 8 9 10 11 12 ## 1973 1 2 3 4 5 6 7 8 9 10 11 12 ## 1974 1 2 3 4 5 6 7 8 9 10 11 12 ## 1975 1 2 3 4 5 6 7 8 9 10 11 12 ## 1976 1 2 3 4 5 6 7 8 9 10 11 12 ## 1977 1 2 3 4 5 6 7 8 9 10 11 12 ## 1978 1 2 3 4 5 6 7 8 9 10 11 12 ## 1979 1 2 3 4 5 6 7 8 9 10 11 12 ## 1980 1 2 3 4 5 6 7 8 9 10 11 12 ## 1981 1 2 3 4 5 6 7 8 9 10 11 12 ## 1982 1 2 3 4 5 6 7 8 9 10 11 12 ## 1983 1 2 3 4 5 6 7 8 9 10 11 12 ## 1984 1 2 3 4 5 6 7 8 9 10 11 12 ## 1985 1 2 3 4 5 6 7 8 9 10 11 12 ## 1986 1 2 3 4 5 6 7 8 9 10 11 12 ## 1987 1 2 3 4 5 6 7 8 9 10 11 12 ## 1988 1 2 3 4 5 6 7 8 9 10 11 12 ## 1989 1 2 3 4 5 6 7 8 9 10 11 12 ## 1990 1 2 3 4 5 6 7 8 9 10 11 12 ## 1991 1 2 3 4 5 6 7 8 9 10 11 12 ## 1992 1 2 3 4 5 6 7 8 9 10 11 12 ## 1993 1 2 3 4 5 6 7 8 9 10 11 12 ## 1994 1 2 3 4 5 6 7 8 9 10 11 12 ## 1995 1 2 3 4 5 6 7 8 9 10 11 12 ## 1996 1 2 3 4 5 6 7 8 9 10 11 12 ## 1997 1 2 3 4 5 6 7 8 9 10 11 12 ## 1998 1 2 3 4 5 6 7 8 9 10 11 12 ## 1999 1 2 3 4 5 6 7 8 9 10 11 12 ## 2000 1 2 3 4 5 6 7 8 9 10 11 12 ## 2001 1 2 3 4 5 6 7 8 9 10 11 12 ## 2002 1 2 3 4 5 6 7 8 9 10 11 12 ## 2003 1 2 3 4 5 6 7 8 9 10 11 12 ## 2004 1 2 3 4 5 6 7 8 9 10 11 12 ## 2005 1 2 3 4 5 6 7 8 9 10 11 12 ## 2006 1 2 3 4 5 6 7 8 9 10 11 12 ## 2007 1 2 3 4 5 6 7 8 9 10 11 12 ## 2008 1 2 3 4 5 6 7 8 9 10 11 12 ## 2009 1 2 3 4 5 6 7 8 9 10 11 12 ## 2010 1 2 3 4 5 6 7 8 9 10 11 12 ## 2011 1 2 3 4 5 6 7 8 9 10 11 12 ## 2012 1 2 3 4 5 6 7 8 9 10 11 12 ## 2013 1 2 3 4 5 6 7 8 9 10 11 12 ## 2014 1 2 3 4 5 6 7 8 9 10 11 12 ## 2015 1 2 3 4 5 6 7 8 9 10 11 12 ## 2016 1 2 3 4 5 6 7 8 9 10 11 12 ## 2017 1 2 3 4 5 6 7 8
# Review the summary statistics summary(candyts)
## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 50.67 87.86 102.28 100.66 114.69 139.92
# Plot the raw data using the base plot function plot(candyts,xlab="Year", ylab = "Candy Production as (%) of 2012 Production",main="Monthly US Candy Production from 1972 to 2017")
autoplot(candyts) + labs(x ="Year", y = "Candy Production as (%) of 2012 Production", title="Monthly US Candy Production from 1972 to 2017") + theme_classic()
boxplot(candyts~cycle(candyts),xlab="Month", ylab = "Candy Production as (%) of 2012 Production" ,main ="Monthly US Candy Production from 1972 to 2017")
decompose_candyts <- decompose(candyts,"multiplicative") autoplot(decompose_candyts) + theme_classic()
adf.test(candyts)
## ## Augmented Dickey-Fuller Test ## ## data: candyts ## Dickey-Fuller = -3.8511, Lag order = 8, p-value = 0.01644 ## alternative hypothesis: stationary
autoplot(acf(candyts,plot=FALSE))+ labs(title="Correlogram of Monthly US Candy Production from 1972 to 2017") + theme_classic()
# Review random time series for any missing values decompose_candyts$random
## Jan Feb Mar Apr May Jun Jul ## 1972 NA NA NA NA NA NA 0.9787572 ## 1973 1.0761795 0.9473530 0.9132216 0.9656140 0.9793905 1.0007720 0.9804063 ## 1974 1.0234654 1.0101506 1.0085930 0.9277814 1.0288494 1.0897889 0.9384914 ## 1975 0.9230786 0.7606563 0.7895305 0.9796870 0.9907331 0.9993895 0.9778035 ## 1976 1.1017564 0.9761060 0.8578393 0.9237903 0.9960446 0.9350020 0.9551832 ## 1977 1.0802857 1.0352078 0.9486717 0.9741162 0.9947351 0.9823271 0.9709299 ## 1978 1.0067991 0.9401793 0.9615251 1.0229469 1.0073131 1.0027358 0.9402659 ## 1979 1.0815598 0.9678241 0.9945811 0.9947011 1.0090818 1.0295511 0.9743203 ## 1980 1.0072378 1.0222154 0.9700077 0.8960477 1.0109169 1.0248370 0.9557686 ## 1981 1.0663504 1.0382545 0.9581211 0.9923900 1.0408064 1.0083888 0.9757711 ## 1982 1.0255183 1.0394728 1.0003954 0.9309010 0.9648606 0.9715567 0.9587531 ## 1983 1.0438402 0.9964194 0.9556628 0.9478825 0.9716754 0.9508104 0.9923925 ## 1984 1.0425804 0.9991186 0.9789151 0.9815199 0.9996099 0.9686329 0.9689979 ## 1985 1.0583884 0.9858120 0.9610471 0.9679764 0.9776360 0.9383305 0.9437711 ## 1986 1.0488043 1.0527404 0.9525917 0.9315782 0.9584188 0.9404565 0.9145469 ## 1987 1.0279020 1.0369495 0.9852540 0.9513826 0.9498732 0.9389653 0.9151874 ## 1988 0.9654684 0.9891577 0.9910146 0.9276815 0.9401442 0.9700056 1.0280570 ## 1989 0.9779015 1.0149707 0.9964639 0.9947011 0.9824710 0.9902880 0.9968993 ## 1990 0.9515141 0.9991962 1.0005037 0.9726390 0.9645352 0.9814228 1.0362785 ## 1991 0.9508761 1.0237819 1.0308271 0.9890375 0.9736316 1.0372871 1.0330955 ## 1992 0.9567976 0.9916921 0.9918939 1.0127637 0.9867154 1.0048243 1.0149749 ## 1993 0.9951466 1.0059780 0.9970875 0.9832959 0.9619261 1.0088886 1.0343564 ## 1994 0.9791843 0.9766466 1.0253259 0.9747276 0.9455486 0.9984593 1.0415612 ## 1995 0.9891501 0.9499608 0.9906527 1.0193171 1.0073178 1.0346058 1.0505964 ## 1996 0.9454690 0.9966754 1.0386312 0.9973990 1.0093170 1.0164543 1.0058724 ## 1997 0.9624377 0.9941577 1.0369470 0.9996864 0.9846017 1.0058823 0.9860929 ## 1998 0.9974208 1.0111229 1.0222381 1.0229087 1.0246063 1.0382498 1.0385843 ## 1999 0.9684827 0.9891533 0.9956498 1.0371616 1.0489892 1.0350348 1.0451511 ## 2000 1.0028894 1.0137996 1.0312639 1.0941691 1.0171673 1.0440861 1.0380995 ## 2001 0.9707562 1.0055856 1.0512438 1.0701746 1.0544859 1.0609635 1.0661304 ## 2002 0.9797347 0.9973486 1.0341330 1.0304900 0.9975998 1.0791611 1.0828742 ## 2003 0.9555456 0.9844979 1.0607157 1.0514483 1.0680173 1.0824013 1.0103299 ## 2004 0.9843716 1.0373285 0.9815785 1.0076299 1.0737324 1.0179147 1.0291336 ## 2005 1.0223622 1.0597498 0.9861794 1.0275656 1.0634276 0.9975512 1.0409970 ## 2006 0.9788623 1.0209626 1.0107090 1.0540690 0.9986648 0.9829915 0.9982987 ## 2007 1.0425262 1.0488142 1.0972638 1.0236323 1.0137360 0.9700581 0.9579204 ## 2008 1.0301257 1.0131347 1.0476286 1.0411874 1.0042244 0.9937603 0.9812811 ## 2009 0.9440316 0.9755372 1.0084270 0.9811047 0.9776007 0.9429620 0.9803844 ## 2010 0.9783712 0.9932854 0.9780225 0.9902678 0.9888176 0.9627460 1.0523867 ## 2011 0.9532572 0.9978626 1.0501150 1.0981810 1.0275185 0.9902809 1.0085391 ## 2012 0.9913205 1.0215820 1.0324084 1.0007144 0.9696736 0.9636440 1.0090708 ## 2013 1.0081698 0.9998851 1.0825794 1.0553930 1.0071326 0.9824054 1.0032351 ## 2014 0.9850306 1.0240050 1.0699937 1.0301243 0.9699663 0.9558069 0.9534352 ## 2015 0.9855292 1.0054955 1.0459152 1.0335318 0.9834094 1.0087785 1.0492934 ## 2016 0.9456591 0.9869491 1.0655132 1.0775657 1.0619599 1.0484242 1.0723096 ## 2017 0.9744466 1.0498084 NA NA NA NA NA ## Aug Sep Oct Nov Dec ## 1972 0.9365460 0.9344087 1.1140425 1.0742231 1.0793987 ## 1973 0.9323009 0.9647906 1.0335452 1.0781336 1.0431200 ## 1974 0.9755594 0.9389995 1.1378558 1.1534733 1.0170223 ## 1975 0.9606815 0.8841904 1.0704250 1.1442028 1.1073961 ## 1976 0.9142150 0.9154073 1.0657359 1.0737560 1.0958971 ## 1977 0.9459972 0.9695885 1.0563222 1.0088540 1.0840816 ## 1978 0.9182295 0.9429551 1.0045743 1.0489317 1.0780576 ## 1979 0.9477358 0.9428646 1.0006080 1.0459912 1.0480651 ## 1980 0.9676588 0.9193752 0.9920504 1.0210765 1.0254892 ## 1981 0.9431090 0.9059491 1.0833782 1.0562073 1.0367204 ## 1982 0.9192367 0.9139413 1.0812466 1.0703303 1.0839762 ## 1983 0.9712381 0.9574885 1.0711528 1.0129875 0.9949386 ## 1984 0.9579845 0.9578789 1.0514702 1.0640439 1.0491080 ## 1985 0.9381556 0.9915886 1.0468959 1.0433569 1.0837119 ## 1986 0.9295041 0.9754523 1.0705506 1.0812393 1.0521460 ## 1987 0.9420154 0.9655095 1.0830817 1.0887821 1.0729630 ## 1988 1.0358205 1.0201054 1.0469999 1.0050068 1.0010947 ## 1989 1.0080431 0.9976865 0.9962387 1.0054791 1.0347648 ## 1990 1.0183640 1.0150878 0.9711166 1.0158991 1.0276128 ## 1991 1.0670233 1.0292693 0.9715222 0.9983479 0.9786283 ## 1992 0.9936512 1.0179733 0.9786842 0.9889763 0.9913499 ## 1993 1.0489271 1.0415762 1.0049974 0.9880296 0.9810659 ## 1994 1.0427765 1.0531515 0.9918265 0.9711002 0.9892188 ## 1995 1.0249400 1.0113341 0.9523684 0.9611766 1.0065362 ## 1996 1.0336421 1.0354553 0.9549993 0.9936453 1.0186895 ## 1997 1.0282986 1.0134091 0.9549606 0.9730800 0.9808064 ## 1998 1.0534700 1.0265534 0.9480982 0.9617097 0.9631477 ## 1999 1.0190936 0.9955268 0.9391874 0.9202806 0.9455156 ## 2000 1.0256826 1.0318530 0.9435663 0.9182707 0.9452409 ## 2001 1.0591137 1.0398947 0.8943203 0.9079712 0.9268690 ## 2002 1.0844472 1.0440924 0.9108420 0.9256854 0.8998670 ## 2003 1.0389558 1.0151862 0.9181335 0.9572822 0.9375534 ## 2004 1.0519192 1.0302939 0.9466492 0.9340836 0.9188531 ## 2005 1.0217025 1.0097629 0.9720382 0.9526534 0.9906123 ## 2006 1.0305555 1.0318451 0.9491454 0.9420558 0.9658726 ## 2007 1.0013257 1.0481904 0.9364191 0.9461593 0.9781993 ## 2008 0.9707572 1.0824837 1.0157221 1.0233592 0.9136768 ## 2009 0.9860127 1.0522149 1.0741510 0.9908983 0.9864714 ## 2010 1.0898951 1.1142692 1.0150490 0.9263837 0.9417798 ## 2011 0.9725887 0.9437122 0.9926709 0.9825157 0.9786966 ## 2012 1.0349744 1.1131917 0.9516530 0.9392814 0.9432138 ## 2013 1.0220293 1.0165699 0.9520167 0.9717735 0.9953433 ## 2014 0.9916234 1.0181068 0.9542323 1.0039704 1.0006576 ## 2015 1.1103347 1.0502633 0.9642597 0.9281548 0.9014666 ## 2016 1.0204496 1.0071374 0.9217813 0.8877654 0.8916889 ## 2017 NA
# Autoplot the random time series which exclude the NA values autoplot(acf(na.remove(decompose_candyts$random),plot=FALSE))+ labs(title="Correlogram of Monthly US Candy Production from 1972 to 2016") + theme_classic()
#FIT A TIME SERIES MODEL #ARIMA Model #Use the auto.arima() function from the forecast R package to fit the best model and coefficients, given the default parameters including seasonality as TRUE. Note we have used the ARIMA modeling procedure as referenced #arima_candyts <- auto.arima(candyts) arima_candyts <- auto.arima(candyts) # or arima_candyts <- auto.arima(candyts) arima_candyts
## Series: candyts ## ARIMA(2,0,2)(0,1,2)[12] with drift ## ## Coefficients: ## ar1 ar2 ma1 ma2 sma1 sma2 drift ## 0.0089 0.8273 0.6804 -0.2666 -0.6063 -0.1153 0.0595 ## s.e. 0.0519 0.0425 0.0676 0.0525 0.0456 0.0432 0.0337 ## ## sigma^2 estimated as 13.91: log likelihood=-1467.25 ## AIC=2950.5 AICc=2950.77 BIC=2984.77
#auto.arima: Returns best ARIMA model according to either AIC, AICc or BIC value. The function conducts a search over possible model within the order constraints provided. #CALCULATE FORECASTS #Finally we can plot a forecast of the time series using the forecast function, again from the forecast R package, with a 95% confidence interval where h is the forecast horizon periods in months. forecast_candyts <- forecast(arima_candyts, level = c(95), h = 36) autoplot(forecast_candyts) + theme_classic()
#BG knowledge: AR Model and MA Model: https://m.blog.naver.com/bluefish850/220749045909 #BG Knowledge: ARIMA: https://www.youtube.com/watch?v=dXND1OEBABI #BG Knowledge: how to apply d in ARIMA(p,d,q): https://people.duke.edu/~rnau/411arim.htm #BG Knowledge: ACF VS PACF: https://leedakyeong.tistory.com/entry/ARIMA%EB%9E%80-ARIMA-%EB%B6%84%EC%84%9D%EA%B8%B0%EB%B2%95-AR-MA-ACF-PACF-%EC%A0%95%EC%83%81%EC%84%B1%EC%9D%B4%EB%9E%80#BG Knowledge: https://sodayeong.tistory.com/37 #BG Knowledge: https://www.youtube.com/watch?v=zNLG8tsA_Go
댓글